Recent Posts

PropellerAds

Friday, March 10, 2017

New world record for quantum teleportation distance

Researchers at the National Institute of Standards and Technology (NIST) have “teleported” or transferred quantum information carried in light particles over 100 kilometres (km) of optical fibre, four times farther than the previous record.
Researchers at NIST have “teleported” or transferred quantum information carried in light particles over 100 km (62 miles) of optical fibre – four times farther than the previous record. The experiment confirmed that quantum communication is feasible over long distances in fibre. Other research groups have teleported quantum information over longer distances in free space, but the ability to do so over conventional fibre-optic lines offers more flexibility for network design.
Not to be confused with Star Trek‘s fictional “beaming up” of people, quantum teleportation involves the transfer, or remote reconstruction, of information encoded in quantum states of matter or light. Teleportation is useful in both quantum communications and quantum computing, which offer prospects for novel capabilities such as unbreakable encryption. The basic method for quantum teleportation was first proposed more than 20 years ago and has been performed by a number of research groups, including one at NIST using atoms in 2004.
The new record, described in Optica, involved transferring quantum information contained in one photon – its specific time slot in a sequence – to another photon transmitted over 102 km of spooled fibre in a laboratory in Colorado. The achievement was made possible by advanced single-photon detectors designed and made at NIST.
teleportation“Only about 1 percent of photons make it all the way through 100 km of fibre,” says NIST’s Marty Stevens. “We never could have done this experiment without these new detectors, which can measure this incredibly weak signal.”
Until now, so much quantum data was lost in fibre that transmission rates and distances were low. This new teleportation technique could be used to make devices called quantum repeaters that could resend data periodically, in order to extend network reach, perhaps enough to eventually build a “quantum internet.” Previously, researchers thought quantum repeaters might need to rely on atoms or other matter, instead of light – a difficult engineering challenge that would also slow down transmission.
Various quantum states can be used to carry information; the NIST experiment used quantum states that indicate when in a sequence of time slots a single photon arrives. This method is novel, in that four of NIST’s photon detectors were positioned to filter out specific quantum states. The detectors rely on superconducting nanowires made of molybdenum silicide. They can record over 80 percent of arriving photons, revealing whether they are in the same or different time slots, each just 1 nanosecond long. The experiments were performed at wavelengths commonly used in telecommunications. Below is an infographic with more details.
teleportationteleportation